Differential Privacy: An Umbrella Review

Privacy-preserving analysis of data refers to possibilities of using personal information from individuals in a completely anonymous fashion. In a statistical sense, this means that statistics and models derived and learned from data are insensitive to individual observations. Differential Privacy as defined by Cynthia Dwork in (Dwork 2006) has become a popular approach for ensuring privacy. In contrast to earlier definitions, Dwork defined differential privacy as a relative guarantee that nothing more could be learned from data whether an individual observation is included or excluded from the analysis. This was achieved by adding random noise that is bigger than the effect of a change due to the largest single participant. The approach was referred as 𝜖-differential privacy. Such an actionable definition gave more room for practitioners to define how, for example, machine learning algorithms can ensure differential privacy. In this paper, we present an umbrella review on differential privacy related studies based on a methodology proposed by Aromataris et al. (Int J Evidence-Based Healthcare 13(3):132–140, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 128.39 Price includes VAT (France)

Softcover Book EUR 168.79 Price includes VAT (France)

Hardcover Book EUR 168.79 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Evaluating the Utility of Differential Privacy: A Use Case Study of a Behavioral Science Dataset

Chapter © 2015

Differential privacy: its technological prescriptive using big data

Article Open access 13 April 2018

A Survey on Differential Privacy for Medical Data Analysis

Article 10 June 2023

References

  1. Abowd, J., et al.: Census TopDown: Differentially Private Data, Incremental Schemas, and Consistency with Public Knowledge (2019). https://systems.cs.columbia.edu/private-systems-class/papers/Abowd2019Census.pdf.
  2. Alamo, T., et al.: Covid-19: open-data resources for monitoring, modeling, and forecasting the epidemic. Electronics 9(5), 827 (2020) ArticleGoogle Scholar
  3. Apple Differential Privacy Team: Learning with Privacy at Scale (2017). https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
  4. Aromataris, E., et al.: Summarizing systematic reviews. Int. J. Evidence-Based Healthcare 13(3), 132–140 (2015). ISSN: 1744-1609. https://doi.org/10.1097/XEB.0000000000000055ArticleGoogle Scholar
  5. Bastian, H., Glasziou, P., Chalmers, I.: Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med 7(9), e1000326 (2010) ArticleGoogle Scholar
  6. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds, pp. 635–658 (2016). https://doi.org/10.1007/978-3-662-53641-4_24
  7. Dankar, F.K., El Emam, K.: Practicing differential privacy in health care: a review. Trans. Data Privacy 6, 35–67 (2013). https://www.researchgate.net/profile/Fida_Dankar/publication/288417434_Practicing_Differential_Privacy_in_Health_Care_A_Review/links/5889c07ea6fdcc9a35c3b516/Practicing-Differential-Privacy-in-Health-Care-A-Review.pdf?origin=publication_detail&fbclid=IwARGoogle Scholar
  8. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. Adv. Neural Inform. Proc. Syst 2017, 3572–3581 (2017) Google Scholar
  9. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local Privacy, Data Processing Inequalities, and Minimax Rates. Tech. rep. 2014 Google Scholar
  10. Dwork, C.: Differential privacy. In: Bugliesi, M., et al. (ed.), Automata, Languages and Programming. Springer, Berlin Heidelberg, pp. 1–12 (2006). ISBN: 978-3-540-35908-1 Google Scholar
  11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., et al. (ed.), Theory and Applications of Models of Computation. Springer, Berlin Heidelberg, pp. 1–19 (2008). ISBN: 978-3-540-79228-4 MATHGoogle Scholar
  12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends®Theor. Comput. Sci. 9(3–4), 211–407 (2014). ISSN: 1551-305X. https://doi.org/10.1561/0400000042
  13. Dwork, C., et al.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. Springer, Berlin Heidelberg, pp. 265–284 (2006). ISBN: 978-3-540-32732-5 ChapterGoogle Scholar
  14. Dwork, C., et al.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) Advances in Cryptology—EUROCRYPT 2006. Springer, Berlin Heidelberg, pp. 486–503 (2006). ISBN: 978-3-540-34547-3 ChapterGoogle Scholar
  15. Eigner, F., et al.: Achieving optimal utility for distributed differential privacy using secure multiparty computation. In: Land, P., Kamm, L. (eds.) Applications of Secure Multiparty computation, Chap. 5, pp. 81–105. IOS Press BV (2015). ISBN: 978-1-61499-532-6. https://doi.org/10.3233/978-1-61499-532-6-81
  16. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. CCS ’14. Association for Computing Machinery, New York, pp. 1054–1067 (2014). ISBN: 9781450329576. https://doi.org/10.1145/2660267.2660348
  17. Facebook: What Are Privacy-Enchancing Technologies (PETs) and How Will They Apply to Ads? (2021). https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
  18. Ficek, J., et al.: A Survey of Differentially Private Regression for Clinical and Epidemiological Research. Int. Stat. Rev. (2020). ISSN: 03067734. https://doi.org/10.1111/insr.12391
  19. Fletcher, S., Zahidul Islam, Md.: Decision tree classification with differential privacy. ACM Comput. Surv. 52(4), 1–33 (2019). ISSN: 0360-0300. https://doi.org/10.1145/3337064
  20. Gehrke, J.: Quo vadis, data privacy? Ann. N. Y. Acad. Sci. 1260(1), 45–54 (2012). ISSN: 00778923. https://doi.org/10.1111/j.1749-6632.2012.06630.xArticleGoogle Scholar
  21. Gong, M., et al.: A survey on differentially private machine learning [Review article]. IEEE Comput. Intell. Mag. 15(2), 49–64 (2020). ISSN: 1556-6048. https://doi.org/10.1109/MCI.2020.2976185ArticleGoogle Scholar
  22. Grant, M.J., Booth, A.: A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inform. Lib. J. 26(2), 91–108 (2009) ArticleGoogle Scholar
  23. Guevara, M.: How we’re helping developers with differential privacy (2021). https://developers.googleblog.com/2021/01/howwere-helping-developers-with-differential-privacy.html
  24. Hassan, M.U., Rehmani, M.H., Chen, J.: Differential privacy techniques for cyber physical systems: a survey. IEEE Commun. Surv. Tutorials 22(1), 746–789 (2020). ISSN: 1553-877X. https://doi.org/10.1109/COMST.2019.2944748ArticleGoogle Scholar
  25. Hassani, H., Huang, X., Silva, E.: Big Data and climate change. Big Data Cogn. Comput. 3(1), 12 (2019) ArticleGoogle Scholar
  26. Hauer, M.E., Santos-Lozada, A.R.: Differential privacy in the 2020 Census will distort COVID-19 rates. Socius 7, 2378023121994014 (2021) ArticleGoogle Scholar
  27. Hoda, R., et al.: Systematic literature reviews in agile software development: a tertiary study. Inform. Softw. Technol. 85, 60–70 (2017) ArticleGoogle Scholar
  28. Isomöttönen, V., Kärkkäinen, T.: Project-based learning emphasizing open resources and student ideation: how to raise student awareness of IPR? In: International Conference on Computer Supported Education, pp. 293–312. Springer, Berlin (2015) Google Scholar
  29. Jahan, N., et al.: How to conduct a systematic review: a narrative literature review. Cureus 8(11) (2016) Google Scholar
  30. Johnson, N., Near, J.P., Song, D.: Towards practical differential privacy for SQL queries. Proc. VLDB Endow. 11(5), 526–539 (2018). ISSN: 2150-8097. https://doi.org/10.1145/3187009.3177733ArticleGoogle Scholar
  31. Kasiviswanathan, S.P., Smith, A.: On the ’semantics’ of differential privacy: a Bayesian formulation. J. Privacy Confidentiality 6(1), 2575–8527 (2014). https://doi.org/10.29012/jpc.v6i1.634ArticleGoogle Scholar
  32. Kasiviswanathan, S.P., et al.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011). ISSN: 0097-5397. https://doi.org/10.1137/090756090ArticleMATHGoogle Scholar
  33. Kessler, S., Hoff, J., Freytag, J.C.: SAP HANA goes private: from privacy research to privacy aware enterprise analytics. Proc. VLDB Endow 12(12), 1998–2009 (2019). ISSN: 2150-8097. https://doi.org/10.14778/3352063.3352119ArticleGoogle Scholar
  34. Kifer, D., et al.: Guidelines for implementing and auditing differentially private systems (2020). http://arxiv.org/abs/2002.04049
  35. Kiranmayi, M., Maheswari, N.: A review on privacy preservation of social networks using graphs. J. Appl. Secur. Res. 1–34 (2020). ISSN: 1936-1610. https://doi.org/10.1080/19361610.2020.1751558
  36. Klerings, I., Weinhandl, A.S., Thaler, K.J.: Information overload in healthcare: too much of a good thing? Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 109(4–5), 285–290 (2015) ArticleGoogle Scholar
  37. Landhuis, E.: Scientific literature: information overload Nature 535(7612), 457–458 (2016) Google Scholar
  38. Liu, F.: Generalized Gaussian mechanism for differential privacy. IEEE Trans. Knowl. Data Eng. 31(4), 747–756 (2019). ISSN: 1558-2191. https://doi.org/10.1109/TKDE.2018.2845388ArticleGoogle Scholar
  39. Machanavajjhala, A., et al.: Privacy: theory meets practice on the map. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 277–286 (2008). https://doi.org/10.1109/ICDE.2008.4497436
  40. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103 (2007). https://doi.org/10.1109/FOCS.2007.66
  41. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. SIGMOD ’09. Association for Computing Machinery, New York, pp. 19–30 (2009). ISBN: 9781605585512. https://doi.org/10.1145/1559845.1559850
  42. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275 (2017). https://doi.org/10.1109/CSF.2017.11
  43. Nayak, C.: New privacy-protected Facebook data for independent research on social media’s impact on democracy (2020). https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-datafor-independent-research-on-social-medias-impact-on-democracy/
  44. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’07. Association for Computing Machinery, New York, pp. 75–84 (2007). ISBN: 9781595936318. https://doi.org/10.1145/1250790.1250803
  45. Oberski, D.L., Kreuter, F.: Differential privacy and social science: an urgent puzzle. Harvard Data Sci. Rev. 2(1) (2020) Google Scholar
  46. Page, M.J, et al.: PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372 (2021) Google Scholar
  47. Perrons, R.K., Jensen, J.W.: Data as an asset: what the oil and gas sector can learn from other industries about “Big Data”. Energy Policy 81, 117–121 (2015) ArticleGoogle Scholar
  48. Rana, S., Gupta, S.K., Venkatesh, S.: Differentially private random forest with high utility. In: 2015 IEEE International Conference on Data Mining, pp. 955–960 (2015). https://doi.org/10.1109/ICDM.2015.76
  49. Sarwate, A.D., et al.: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Front. Neuroinform. 8. ISSN: 1662-5196. https://doi.org/10.3389/fninf.2014.00035
  50. Snoke, J., Bowen, C.M.: How statisticians should grapple with privacy in a changing data landscape. Chance 33(4), 6–13 (2020). https://doi.org/10.108/09332480.2020.1847947ArticleGoogle Scholar
  51. Snyder, H.: Literature review as a research methodology: an overview and guidelines. J. Bus. Res. 104, 333–339 (2019) ArticleGoogle Scholar
  52. Tatem, A.J.: WorldPop, open data for spatial demography. Sci. Data 4(1), 1–4 (2017) ArticleGoogle Scholar
  53. Testuggine, D., Mironov, I.: Introducing Opacus: a high-speed library for training PyTorch models with differential privacy (2020). https://ai.facebook.com/blog/introducingopacus-a-high-speed-library-for-training-pytorch-modelswith-differential-privacy/
  54. Wang, J., Liu S., Li, Y.: A review of differential privacy in individual data release. Int. J. Distrib. Sensor Netw. 2015, 1–18 (2015). ISSN: 1550-1329. https://doi.org/10.1155/2015/259682Google Scholar
  55. Wang, T., et al.: A comprehensive survey on local differential privacy toward data statistics and analysis. Sensors 20(24), 7030 (2020). ISSN: 1424-8220. https://doi.org/10.3390/s20247030ArticleGoogle Scholar
  56. Wang, Y.-X., Lei, J., Fienberg, S.E.: Learning with differential privacy: stability learnability and the sufficiency and necessity of ERM principle. J. Mach. Learn. Res. 17(1), 6353–6392 (2016). ISSN: 1532-4435 MATHGoogle Scholar
  57. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63 (1965). ISSN: 01621459. https://doi.org/10.2307/2283137ArticleMATHGoogle Scholar
  58. Wennberg, J., Gittelsohn, A.: Small area variations in health care delivery: a population-based health information system can guide planning and regulatory decision-making. Science 182(4117), 1102–1108 (1973) ArticleGoogle Scholar
  59. Zeng, X., et al.: Repurpose open data to discover therapeutics for COVID-19 using deep learning. J. Proteome Res. 19(11), 4624–4636 (2020) ArticleGoogle Scholar
  60. Zhu, T., et al.: Differentially private data publishing and analysis: a survey. IEEE Trans. Knowl. Data Eng. 29(8), 1619–1638 (2017). ISSN: 1041-4347. https://doi.org/10.1109/TKDE.2017.2697856ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. University of Jyväskylä, Jyväskylä, Finland Minna Kilpala, Tommi Kärkkäinen & Timo Hämäläinen
  1. Minna Kilpala